|
t为锐角,求证 1+1/sint)*(1+1/cost)>5.
证明 上述待证不等式右边系数不是最佳的,最佳系数为(1+√2)^2,当t=π/4取得.即
(1+1/sint)*(1+1/cost)≥(1+√2)^2. (1)
(1)左边=1+(sint+cost)/(sint*cost)+1/(sint*cost)
≥1+2/√(sint*cost)+1/(sint*cost)
=[1+1/√(sint*cost)]^2=[1+(√2)/√(sin2t)]^2≥(1+√2)^2.
显然(1+√2)^2>5
证明:由柯西不等式,得
(1+1/sint)*(1+1/cost)≥(1+1/√(sintcost))2
≥(1+1/√((sin2t+cos2t)/2))2
=(1+√2)2
>5
(1+1/sint)(1+1/cost)=1+1/sint+1/cost+1/sint*cost
因为t为锐角
所以sint,cost>0
注:下面式子里sqrt()的意思为开根号
原式>=1+2*sqrt(1/sint*cost)+1/sint*cost>=1+2*sqrt(2)+2=1+2*1.414+2>5
原不等式等价于(1+sint)(1+cost)>5sintcost
即1+sint+cost>4sintcost
令sint+cost=x,(12x^2-2即2x^2-x-3
<span class=detail-text-more style=display: none>全部<i class=icon-iask icon-text-arrow></i></span> |
|